

An Accurate Photonic Capacitance Model for GaAs MESFETs

Cesar Navarro, José-María Zamanillo, Angel Mediavilla Sánchez, *Member, IEEE*,
 Antonio Tazón Puente, *Member, IEEE*, Jose Luis García, *Member, IEEE*, M. Lomer, *Member, IEEE*, and
 José Miguel López-Higuera, *Senior Member, IEEE*

Abstract—A new set of pseudoempirical equations is presented in order to simulate the optical and bias dependencies of GaAs MESFET junction capacitances, which is valid for the whole I – V plane. The variations induced in the small-signal equivalent circuit by the optical illumination are extracted from on-wafer scattering-parameter measurements. New linear and quasi-logarithmic variations versus the incident optical power are shown for gate–drain and gate–source (C_{gd} and C_{gs}) capacitances. Furthermore, experimental results are in very good agreement with the simulated values for a wide range of optical power and bias conditions. Large-signal MESFET models show a better fit with measured S -parameters than those previously published, leading to a greater degree of confidence in the design of photonic monolithic microwave integrated circuits.

Index Terms—Incident optical power, junction capacitances, laser, modeling, photonic MMIC.

I. INTRODUCTION

AT PRESENT, optical fiber communication plays an important role in cable communication technology for wideband, multimedia, and high-speed applications. In order to be able to manufacture wireless terminals for optical fiber links at reasonable cost, good agreement must be achieved between the photo-detector and the millimeter-wave circuit, as well as small size and low weight [1], [2]. Integration of microwave transistors with conventional photodiodes [p-i-n, metal–semiconductor–metal (MSM)] requires additional processing steps. GaAs MESFET devices can be used as photodetectors, embedded in the monolithic chip and acting as an optical port, an idea that has been widely investigated recently [2], [3].

It is very important, in order to work with efficient computer-aided design (CAD) tools, to have good modeling approaches, capable of predicting the small- and large-signal behavior of GaAs devices. A comprehensive knowledge of these technologies and related applications in communications, as well as the control of microwave systems, requires an accurate understanding of the optical properties of microwave transistors. According to the previous considerations, a careful

characterization is required, as well as the development of an accurate model for an optically controlled microwave device, in order to be able to perform efficient simulations and accurate predictions of photonic microwave integrated system behavior.

When a GaAs MESFET device is optically illuminated, absorption phenomena take place at the gate–drain and gate–source regions, which induce both photoconductive and photovoltaic effects [4]. Several authors have developed models to describe some of these optical effects [5]–[7]. Our group has investigated the large-signal dynamic properties of GaAs FET devices under optical illumination and has developed the first accurate electrooptical model for the drain–source current (I_{ds}), which includes the effects of optical illumination on the bias-dependent dynamic behavior [8], [9].

From a large-signal point-of-view, the simulation of nonlinear microwave circuits using GaAs MESFET devices under laser illumination reveals that simulation accuracy is quite sensitive to the precision used to model the gate–source and gate–drain capacitances as functions of bias voltage [9]. A limited amount of research have covered this aspect and, perhaps, the most innovative was presented by Kawasaki *et al.* [7]. It includes the optical parameters in the modified Statz [10] capacitance model, which takes into account optical effects by using first-degree polynomial ratios.

From the multibias capacitance results we have obtained, it is observed that the variations of C_{gd} and C_{gs} with optical power are more complex than those given by Kawasaki, following a quasi-linear form for C_{gd} and quasi-logarithmic for C_{gs} . Our approach leads to more accurate fitting with experimental measurements for both C_{gd} and C_{gs} . Furthermore, the Statz approach was considered unsuitable because of its complexity since, for circuits with a large number of devices, it consumes excessive computational time. In many cases, a compromise between dc and ac accuracies is required, as can be observed, for example, in the output conductance found by Kawasaki. The electrooptical model presented in this paper for GaAs MESFET devices is based on the Scheinberg model [10] using a classical FET model and provides higher accuracy and flexibility than previous models, both in the linear and saturation regions, as a function of V_{gs} , V_{gq} , and the incident optical power (PL). The capacitor fitting parameters are not involved in the simulation of any of the devices' nonlinearities, therefore, allowing for independent simulation of static and dynamic behavior, as well as high execution speed in a standard PC. This allows the new expressions to be used easily in designs, which include electrooptical devices, such as optical switches, optically tuned oscillators, etc. [12], with a higher degree of confidence.

Manuscript received June 16, 1999; revised April 20, 2000. This work was supported by the Spanish Comisión Interministerial de Ciencia y Tecnología under Grant TIC 95/0364.

C. Navarro, J.-M. Zamanillo, A. Mediavilla Sánchez, A. Tazón Puente, and J. L. García are with the Microwaves Group, Department of Communications Engineering, University of Cantabria, 39005 Santander, Spain (e-mail: jose.zamanillo@unican.es).

M. Lomer and J. M. López-Higuera are with the Photonic Engineering Group, Tecnología Electrónica e Ingeniería de Sistemas y Automática Department, University of Cantabria, 39005 Santander, Spain (e-mail: lomer@teisa.unican.es).

Publisher Item Identifier S 0018-9480(02)03035-1.

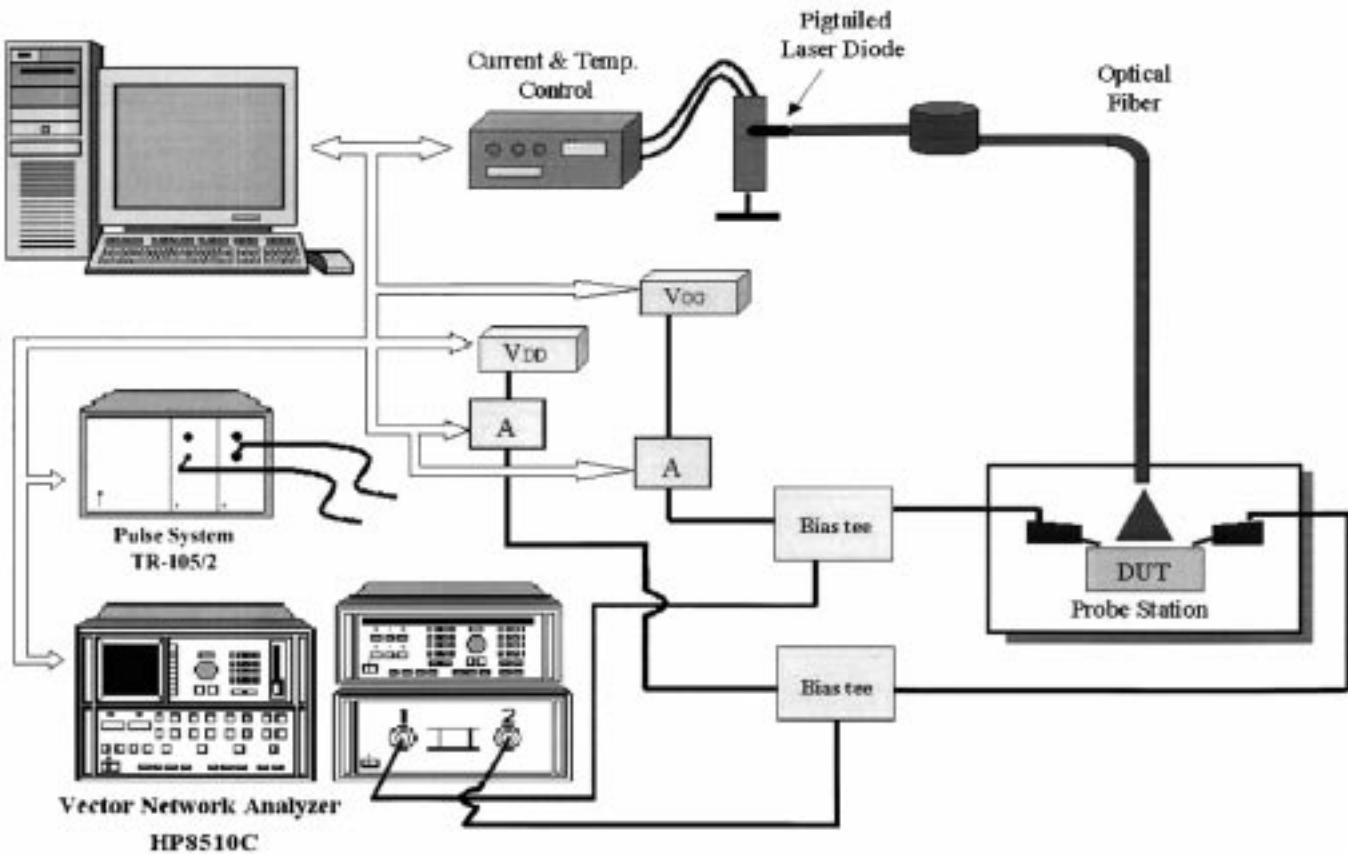
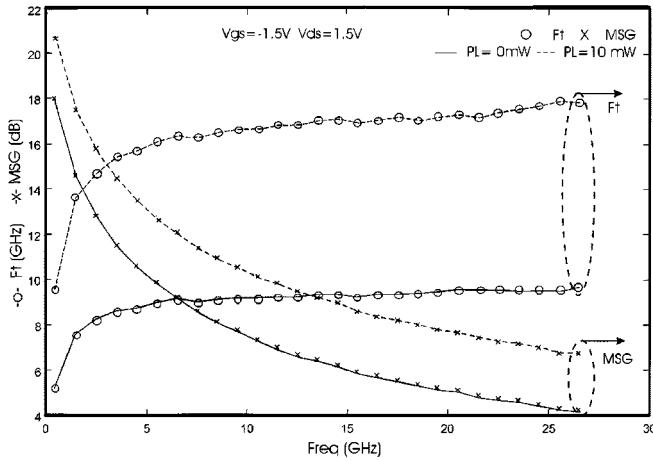
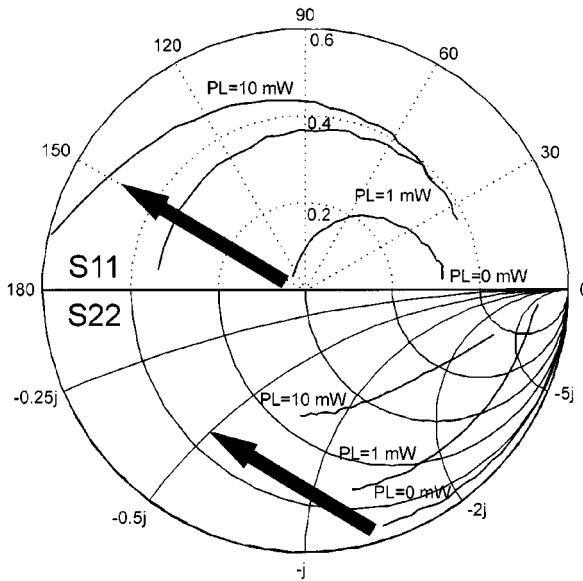


Fig. 1. Experimental setup.

II. EXPERIMENTAL PROCEDURE

To establish an accurate FET model that includes optical parameters, experiments were performed at dc and pulsed I - V characteristics, along with S -parameter measurements for various optical powers, using a set of F20 GEC-Marconi GaAs MESFET devices with different gate lengths. Even when these devices were not designed for optical applications, they had enough optical coupling efficiency to allow the observation and measurement of this type of interaction.



Direct optical illumination was provided by a pigtailed laser diode SDL5301-G1 with $\lambda = 0.83$ nm and maximum optical power of 12.5 mW. The output of the laser diode was guided to the illumination point on the MESFET by a single-mode fiber (5/125), whose end was positioned using a micropositioner to illuminate the active area (fingers) of the GaAs MESFET. The experimental setup is shown in the block diagram of Fig. 1. It must be noted that an external gate resistance was not included in the gate bias circuit. The conditions for the far-field Gaussian profile were obtained from the optical fiber parameters. The Gaussian beam diameter at the fiber's end was $W_0 = 3.1$ mm and the diffraction angle $\phi = 0.085$ rad. The dc, pulsed I - V characteristics, and small-signal S -parameters were measured on wafer for various optical powers, with a Cascade SUMMIT 9000 microprobe test station, our in-house developed pulsed measurement system [12] and an HP8510 vector network analyzer.

The variations of some figures-of-merit are an important issue to take into account in the design of optically controlled circuits. With this in mind, common-source current gain cutoff frequency (f_T) and maximum stable gain (MSG) were employed and both were computed with and without illumination. At $V_{gs} = -1.5$ V and $V_{ds} = 1.5$ V, maximum f_T without illumination was 9.5 and 17.75 GHz with an optical power of 10 mW. The maximum value of f_T was, therefore, increased by 80%, while the MSG was improved by 2.5 dB (Fig. 2). Bearing in mind the aforementioned experimental observations; we believe that the development of an accurate optical capacitance model to describe the photonic microwave characteristics of GaAs MESFETs is very important. The S_{21} - and S_{22} -parameter variations for a six-finger 50-mm/finger GEC-Marconi MESFET induced by different optical illumination powers, at one bias point, are shown in Fig. 3.

III. CAPACITANCE MODEL

A complete set of multibias S -parameter measurements was performed in the range of 0.5–26.5 GHz for various different optical powers. The typical FET small-signal equivalent circuit was also computed using the classical technique described in [13].

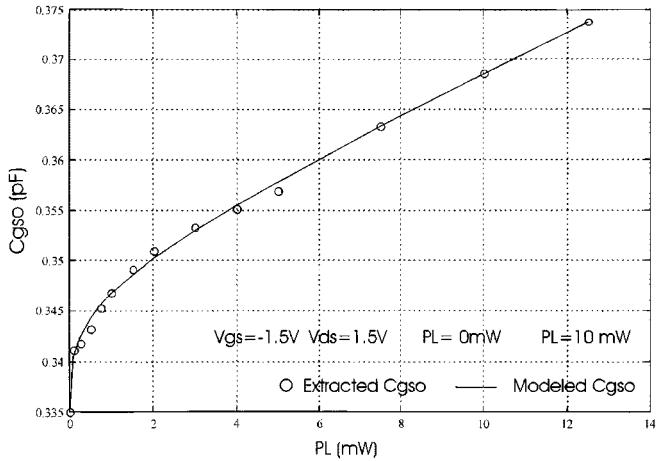
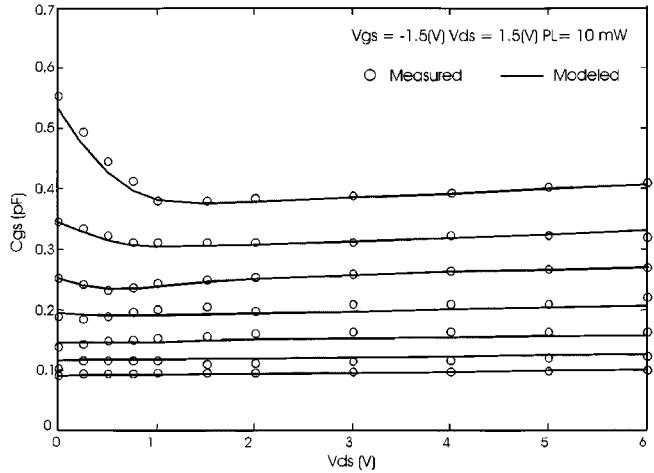


It must be emphasized that no extra elements were included in the model in order to characterize optical effects. In our study, we paid special attention to variations of C_{gs} and C_{gd} when the

Fig. 2. f_T and MSG with and without optical illumination.Fig. 3. S -parameter variations with optical illumination at $V_{GS} = -1.5$ V and $V_{DS} = 1.5$ V (optical powers = 0, 1, 10 mW).

device is subjected to optical illumination. To be able to develop an accurate expression for such variations, taking into account the optical effects, the empirical capacitance model developed by Scheinberg and Chisholm [10] has been modified to include a new parameter for the incident optical power (PL). Since C_{gd} shows an approximately linear dependence on optical power, the new equation, including this parameter, can be stated as follows:

$$C_{gd} = C_{gdo} \left\{ 1 + C_f \cdot \tanh \left(S_g \cdot [V_{GD} - D_C \cdot \tanh(D_k \cdot V_{GS})] \right) \right\} + m \cdot PL \quad (1)$$

where C_{gdo} , C_f , S_g , D_C , and D_k are the parameters given by Scheinberg and Chisholm, and m is a new semiempirical constant introduced to include the optical power as a new variable.

Fig. 4. Extracted and simulated C_{gso} parameter for different optical powers.Fig. 5. Measured and simulated C_{gs} capacitance for a $6 \times 50 \mu\text{m}$ GaAs MESFET with an optical power of 10 mW.

The gate-to-source capacitance equation developed by Scheinberg and Chisholm is

$$C_{gs} = C_{gso} \left\{ 1 + C_{fgs} \cdot \tanh \left(S_g \cdot [V_{GS} - D_{CGS} \cdot \tanh(D_k \cdot V_{GD})] \right) \right\}. \quad (2)$$

The correct description of this capacitance when the MESFET is illuminated is more complicated and it is necessary to relate some of its parameters to the incident optical power as follows:

$$C_{gso} = C_1 + \frac{C_2 \cdot PL + C_3 \cdot PL^2}{1 + C_4 \cdot PL^{C_5}} \quad (3)$$

$$C_{fgs} = A + \frac{B \cdot PL}{1 + C \cdot PL^D} \quad (4)$$

$$D_c = D_{C1} + \frac{D_{C2} \cdot PL + D_{C3} \cdot PL^2}{1 + D_{C4} \cdot PL^{D_{C5}}} \quad (5)$$

where C_1 , C_2 , C_3 , C_4 , A , B , C , D , D_{C1} , D_{C2} , D_{C3} , D_{C4} , and D_{C5} are semiempirical constants.

Fig. 4 shows the measured (at $V_{GS} = -1.5$ V) and simulated value of C_{gso} versus the optical power, using our approach. In this figure, the quasi-logarithmic dependence on optical illumination can be observed.

IV. CONCLUSIONS

Agreement between extracted and simulated values of C_{gso} , as well as for the other two parameters (C_f and D_c) has been found to be quite good. The measured and simulated value of C_{gs} as a function of V_{ds} and V_{gs} when the device is illuminated with 10 mW of optical power has been shown in Fig. 5. We believe that this is the first model to provide this degree of accuracy as a function of bias and optical power. Moreover, since additional elements are not included in the small-signal equivalent circuit and the parameters introduced do not affect other aspects of the behavior of the model, no convergence problems were experienced and no special parameter optimization techniques need to be employed. This makes the model very suitable for incorporating in standard CAD tools in order to improve the accuracy of optical monolithic microwave integrated circuit (MMIC) designs.

REFERENCES

- [1] R. Simons, *Optical Control of Microwave Devices*. Norwood, MA: Artech House, 1990.
- [2] G. P. Agrawal, *Fiber-Optic Communication Systems*. New York: Wiley, 1997.
- [3] H. Ogawa, D. Polifko, and S. Banda, "Millimeter-wave fiber optics systems for personal radio communication," *IEEE Trans. Microwave Theory Tech.*, vol. 40, pp. 2285–2293, Dec. 1993.
- [4] A. Madjar, P. R. Herczfeld, and A. Paoletta, "Analytical model for optically generated currents in GaAs MESFET's," *IEEE Trans. Microwave Theory Tech.*, vol. 40, pp. 1681–1691, Aug. 1992.
- [5] A. Paoletta, A. Madjar, and P. R. Herczfeld, "Modeling the GaAs MESFET's response to modulated light at radio and microwave frequencies," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 1122–1130, July 1994.
- [6] E. F. Calandra and G. Sirna, "CAD-oriented modeling of the optically-controlled GaAs MESFET," in *Proc. GaAs Symp. Dig.*, Turin, Italy, Apr. 1994, pp. 401–404.
- [7] S. Kawasaki, H. Shiomi, and K. Matsugatani, "A novel FET model including an illumination-intensity parameter for simulation of optically controlled millimeter-wave oscillators," *IEEE Trans. Microwave Theory Tech.*, vol. 46, pp. 820–828, June 1998.
- [8] A. Mediavilla, A. Tazón, J. L. García, T. Fernández, J. A. García, J. M. García, C. Navarro, and J. M. Zamanillo, "Dynamic properties and modeling of large signal, thermal, optical and intermodulation effects in microwave GaAs devices," presented at the IEEE MTT-S Int. Microwave Symp., Denver, CO, June 1997.
- [9] C. Navarro, J. M. Zamanillo, A. Mediavilla, and J. L. García, "Large signal dynamic properties of GaAs MESFET/HEMT devices under optical illumination," in *Proc. GaAs Symp. Dig.*, Amsterdam, The Netherlands, Oct. 1998, pp. 350–354.
- [10] N. Scheinberg and E. Chisholm, "A capacitance model for GaAs MESFET," *IEEE J. Solid-State Circuits*, vol. 26, pp. 1467–1470, Oct. 1991.
- [11] A. J. Seeds and A. Salles, "Optical control of microwave semiconductor devices," *IEEE Trans. Microwave Theory Tech.*, vol. 38, pp. 577–585, May 1990.
- [12] T. Fernández, Y. Newport, J. M. Zamanillo, A. Mediavilla, and A. Tazón, "High speed automated pulsed I/V measurement system," in *23rd Eur. Microwave Conf.*, Madrid, Spain, Sept. 1993, pp. 494–496.
- [13] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, "A new method of determining the FET small-signal equivalent circuit," *IEEE Trans. Microwave Theory Tech.*, vol. 36, pp. 1151–1159, July 1988.

Cesar Navarro was born in Vitoria, Spain, in 1969. He received the Physics degree and Ph.D. degree in telecommunication engineering from the University of Cantabria, Cantabria, Spain, in 1992 and 2000, respectively.

In 1995, he joined the ETSII and Telecommunications, University of Cantabria, where he researches characterization and modeling of microwave semiconductor active devices, especially FETs and heterojunction bipolar transistors (HBTs), under the effects of optical illumination. In 2000, he joined the Departamento de Mantenimiento Planta Externa for Telefónica de España, SAU, Madrid, Spain.

José-María Zamanillo was born in Madrid, Spain, in 1963. He received the B.Sc. and Ph.D. degrees in physics from the University of Cantabria, Cantabria, Spain, in 1988 and 1996, respectively.

Since 1988, he has been involved with education and research at the University of Cantabria, where he is currently an Associate Professor. He has been engaged in various European and Spanish projects, mainly in the fields of microwaves and device modeling. His current research interests include linear and nonlinear modeling of GaAs MESFETs, high electron-mobility transistors (HEMTs), HBTs, and microwave active devices.

Angel Mediavilla Sánchez (M'92) was born in Santander, Spain, in 1955. He graduated (with honors) and received the Doctor of Physics degree from the University of Cantabria, Cantabria, Spain, in 1978 and 1984, respectively.

From 1980 to 1983, he was Ingénieur Stagière at Thomson-CSF, Corbeville, France. He is currently a Professor in the Department of Electronics, University of Cantabria. He has wide experience in analysis and optimization of nonlinear microwave active devices and circuits in both hybrid and monolithic

technologies. He has participated in Spanish and European projects in nonlinear modeling (Esprit Project 6050 MANPOWER) and microwave and millimeter-wave communication circuits and systems (Spanish Project PlanSAT, European Project CABSINET, etc.). His current research fields are active microwave circuits, mainly in the area of nonlinear modeling of GaAs devices and their applications in large-signal computer design.

Antonio Tazón Puente (M'92) was born in Santander, Spain, in 1951. He graduated and received the Doctor of Physics degree from the University of Cantabria, Cantabria, Spain, in 1978 and 1987, respectively.

From 1991 to 1995, he was a Professor in the Department of Communication Engineering, University of Cantabria. From March 1985 to October 1985 and from April 1986 to July 1986, he was with the IRCOM Department, University of Limoges, Limoges, France, where he was involved with nonlinear modeling and load-pull techniques. He has participated in Spanish and European projects in the nonlinear modeling (Esprit Project 6050 MANPOWER) and microwave and millimeter-wave communication circuits and systems (Spanish Project PlanSAT, European Project CABSINET, etc.). His current main research interests are active microwave circuits, mainly in the area of linear and large-signal modeling and small-signal intermodulation of GaAs and Si–Ge devices and their applications in nonlinear computer design.

Jose Luis García (M'74) was born in Zaragoza, Spain, in 1938. He received the M.S.E. degree from the University of Zaragoza, Zaragoza, Spain, in 1964, and the Ph.D. degree from the University of Valladolid, Valladolid, Spain, in 1971.

From 1966 to 1973, he was an Associate Professor at the University of Valladolid, where he was involved with analog simulation of systems and the generation of pseudorandom signals. In 1973, he became a Professor of electronics engineering in the Department of Electronics, University of Cantabria, Cantabria, Spain, where he has been Dean of the Telecommunications Engineering School and head of the Department. He is currently the Head of the Department of Communications Engineering, University of Cantabria. He has been involved with microwave and millimeter-wave systems and components for mobile, radiolinks, and satellite communications. His current research interests include broadcasting of digital TV through satellite and SMATV-DTM systems, wireless CDMA-SS for indoor applications, low-speed CDMA satellite communications and cellular access to broad-band services, and interactive TV at millimeter waves.

Dr. García is a member of the Committee of the E-12 professional group of the Institution of Electrical Engineers (IEE), U.K.

M. Lomer (M'94) was born in Lima, Perú. He received the Electronic Technique Engineering degree from the Escuela Nacional de Ingeniería Técnica, Lima, Perú, in 1978, the Telecommunication Engineering degree from the Ecole Nationale de l'Électronique et de ses Applications, Cergy-Pontoise, France, in 1988, and the Ph.D. degree in electronics from the Université de Limoges, Limoges, France, in 1992. His doctoral dissertation concerned the study of whispering-gallery modes and making nonlinear optical waveguides by diffusion of lead.

Since October 1992, he has been an Associate Professor with the University of Cantabria, Cantabria, Spain, where he is a member of the Photonic Engineering Group. His current research interests included polymer optical fibers, passive integrated optical devices, and fiber-optic sensors.

José Miguel López-Higuera (M'93–SM'98) was born in Ramales de la Victoria, Cantabria, Spain, in February 1954. He received the Technical Engineering degree in telecommunications from the Universidad Laboral de Alcalá de Henares, Madrid, Spain, and the Telecommunications Engineering degree and the Ph.D. degree in telecommunications engineering (with an extraordinary award) from the Universidad Politécnica de Madrid (UPM), Madrid, Spain.

He was an Assistant Professor with the Universidad Laboral de Alcalá de Henares and UPM. In 1991, he became an Associate Professor and a Full Professor in 2001, with the University of Cantabria, where he teaches undergraduate and postgraduate courses in electronics and photonics, mainly focusing on optical communications, optical-fiber sensor systems for civil engineering, electrical power generation, environmental, industrial and smart structure applications, and microwave signal generation and control with photonic techniques. He has also acted as a technical referee for research proposals with the Spanish Evaluation Agency and the Spanish Commission of Science and Technology in its ad-hoc committees.

Prof. López-Higuera is an Associate Senior Member of the Institute of Electrical Engineers (IEE), U.K. He is a member of the Optical Society of America (OSA) and the International Society of Optical Engineers (SPIE). He has been a member of the Technical Program Committees of Scientific International Meetings, such as the European Workshop on Optical Fiber Sensors (EWOFS'98), the Optoelectronics Distance Measurements and Applications (OPIMAP II and III), the International Optical Fiber Sensors Conferences (OFS'15), and Spanish conferences such as URSI and OPTOEL.